The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
二进制神经网络(BNNS)对现实世界中嵌入式设备显示出巨大的希望。作为实现强大BNN的关键步骤之一,规模因子计算在减少其实价对应物的性能差距方面起着至关重要的作用。然而,现有的BNN忽略了实价重量和尺度因子的固有双线关系,从而导致训练过程不足引起的亚最佳模型。为了解决这个问题,提出了复发性双线性优化,以通过将固有的双线性变量关联到背面传播过程中,以改善BNNS(RBONN)的学习过程。我们的工作是从双线性角度优化BNN的首次尝试。具体而言,我们采用经常​​性优化和密度 - 列表来依次回溯稀疏的实价过滤器,该过滤器将经过充分的训练并基于可控的学习过程达到其性能限制。我们获得了强大的rbonn,在各种模型和数据集上的最先进的BNN上表现出令人印象深刻的性能。特别是,在对象检测的任务下,rbonn具有出色的概括性能。我们的代码在https://github.com/stevetsui/rbonn上进行开源。
translated by 谷歌翻译
我们为指定实体识别(NER)提出了一个有效的双重编码框架,该框架将对比度学习用于映射候选文本跨度,并将实体类型映射到同一矢量表示空间中。先前的工作主要将NER作为序列标记或跨度分类。相反,我们将NER视为一个度量学习问题,它最大程度地提高了实体提及的向量表示之间的相似性及其类型。这使得易于处理嵌套和平坦的ner,并且可以更好地利用嘈杂的自我诉讼信号。 NER对本双重编码器制定的主要挑战在于将非实体跨度与实体提及分开。我们没有明确标记所有非实体跨度为外部(O)与大多数先前方法相同的类别(O),而是引入了一种新型的动态阈值损失,这与标准的对比度损失一起学习。实验表明,我们的方法在受到监督和远处有监督的设置中的表现良好(例如,Genia,NCBI,BC5CDR,JNLPBA)。
translated by 谷歌翻译
基于单个草图图像重建3D形状是由于稀疏,不规则的草图和常规,密集的3D形状之间的较大域间隙而具有挑战性的。现有的作品尝试采用从草图提取的全局功能来直接预测3D坐标,但通常会遭受失去对输入草图不忠心的细节。通过分析3D到2D投影过程,我们注意到表征2D点云分布的密度图(即,投影平面每个位置的点的概率)可以用作代理,以促进该代理重建过程。为此,我们首先通过图像翻译网络将草图翻译成一个更有信息的2D表示,可用于生成密度映射。接下来,通过两个阶段的概率采样过程重建一个3D点云:首先通过对密度映射进行采样,首先恢复2D点(即X和Y坐标);然后通过在每个2D点确定的射线处采样深度值来预测深度​​(即Z坐标)。进行了广泛的实验,定量和定性结果都表明,我们提出的方法显着优于其他基线方法。
translated by 谷歌翻译
尽管发展了排名优化技术,但点式模型仍然是点击率(CTR)预测的主导方法。它可以归因于点式模型的校准能力,因为可以将预测视为点击概率。在实践中,通常还以排名能力来评估CTR预测模型,基于排名损失(例如,成对或列表损失)的预测模型通常比点置损失更好。先前的研究已经实验了两种损失的直接组合,以从损失中获得收益并观察到改善的性能。但是,先前的研究将输出logit的含义作为点击率,这可能会导致次优的解决方案。为了解决这个问题,我们提出了一种可以共同优化排名和校准能力的方法(简称JRC)。 JRC通过将样品的logit值与不同的标签进行对比,并约束预测概率是logit减法的函数,从而提高了排名能力。我们进一步表明JRC巩固了对逻辑的解释,其中逻辑在其中建模关节分布。通过这样的解释,我们证明JRC近似优化了上下文化的混合歧视生成目标。公共和工业数据集以及在线A/B测试的实验表明,我们的方法提高了排名和校准能力。自2022年5月以来,JRC已被部署在阿里巴巴的展示广告平台上,并获得了显着改进的绩效。
translated by 谷歌翻译
在本文中,我们介绍了2022年多模式情感分析挑战(MUSE)的解决方案,其中包括Muse-Humor,Muse-Rection和Muse Surns Sub-Challenges。 2022年穆斯穆斯(Muse 2022)着重于幽默检测,情绪反应和多模式的情感压力,利用不同的方式和数据集。在我们的工作中,提取了不同种类的多模式特征,包括声学,视觉,文本和生物学特征。这些功能由Temma和Gru融合到自发机制框架中。在本文中,1)提取了一些新的音频功能,面部表达功能和段落级文本嵌入以进行准确的改进。 2)我们通过挖掘和融合多模式特征来显着提高多模式情感预测的准确性和可靠性。 3)在模型培训中应用有效的数据增强策略,以减轻样本不平衡问题并防止模型形成学习有偏见的主题字符。对于博物馆的子挑战,我们的模型获得了0.8932的AUC分数。对于Muse Rection子挑战,我们在测试集上的Pearson相关系数为0.3879,它的表现优于所有其他参与者。对于Muse Surst Sub-Challenge,我们的方法在测试数据集上的唤醒和价值都优于基线,达到了0.5151的最终综合结果。
translated by 谷歌翻译
由于推荐系统(RS)在指导客户进行购买中的关键作用,因此有自然的动力,不道德的政党为利润做出欺骗。在本文中,我们研究了先令攻击,在该攻击中,对抗方为不适当的目的注入了许多假用户配置文件。常规的先令攻击方法缺乏攻击性转移性(即,攻击对某些受害者RS模型无效)和/或攻击隐形性(即,很容易检测到注射的配置文件)。为了克服这些问题,我们提出了基于生成对抗网络的新型攻击模型。 Leg-Up从采样``模板''中从真实用户那里学习用户行为模式,并构建了伪造的用户配置文件。为了模拟真实的用户,Lige-Up中的发电机直接输出离散评级。为了增强攻击传递性,通过在替代RS模型上最大化攻击性能来优化生成器的参数。为了提高攻击的隐形性,Leg-Up采用歧视器来指导发电机生成无法检测到的假用户配置文件。基准测试的实验表明,在广泛的受害者RS模型上,腿部超过了最先进的先令攻击方法。我们工作的源代码可在以下网址提供:https://github.com/xmudm/shillingattack。
translated by 谷歌翻译
视觉变压器(VIT)正在改变对象检测方法的景观。 VIT的自然使用方法是用基于变压器的骨干替换基于CNN的骨干,该主链很简单有效,其价格为推理带来了可观的计算负担。更微妙的用法是DEDR家族,它消除了对物体检测中许多手工设计的组件的需求,但引入了一个解码器,要求超长时间进行融合。结果,基于变压器的对象检测不能在大规模应用中占上风。为了克服这些问题,我们提出了一种新型的无解码器基于完全变压器(DFFT)对象检测器,这是第一次在训练和推理阶段达到高效率。我们通过居中两个切入点来简化反对检测到仅编码单级锚点的密集预测问题:1)消除训练感知的解码器,并利用两个强的编码器来保留单层特征映射预测的准确性; 2)探索具有有限的计算资源的检测任务的低级语义特征。特别是,我们设计了一种新型的轻巧的面向检测的变压器主链,该主链有效地捕获了基于良好的消融研究的丰富语义的低级特征。 MS Coco基准测试的广泛实验表明,DFFT_SMALL的表现优于2.5%AP,计算成本降低28%,$ 10 \ $ 10 \乘以$ 10 \乘以$较少的培训时期。与尖端的基于锚的探测器视网膜相比,DFFT_SMALL获得了超过5.5%的AP增益,同时降低了70%的计算成本。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译